Short Communication

Reactions of molybdenum hexafluoride with compounds containing methoxo groups

D. W. WALKER AND J. M. WINFIELD

Chemistry Department, University of Glasgow, Glasgow, W. 2 (Great Britain) (Received November 18th, 1971)

The preparation of methoxotungsten(VI) fluorides from tungsten hexafluoride and methylmethoxosilanes or dimethyl sulphite has been reported^{1,2}. We now describe some corresponding reactions of molybdenum hexafluoride, which enable comparisons between the two hexafluorides to be made.

 MoF_6 reacts with the methylmethoxosilanes $Me_{4-n}Si(OMe)_n$ (n - 1-4)below 0° to give the corresponding fluorosilane, and methyl fluorosulphite is formed from $(MeO)_2SO$ under similar conditions. Solutions of MoF_6 in $Me_{4-n}-SiF_n$ or MeOS(O)F are yellow, possibly due to intermolecular charge transfer interactions³. Reduction of Mo^{VI} , which occurs when MoF_6 reacts with silicon tetrachloride and other chlorides ⁴, is not observed, but the identity of the molybdenum-containing products depend on the stoichiometry of the reactions.

An involatile, yellow liquid identified as pentamethoxomolybdenum(VI) fluoride is formed from MoF₆ and a large excess of dimethyldimethoxosilane (reaction 1 in Table 1). Its NMR spectrum (¹⁹F, singlet, $\delta = -11.2$ ppm; ¹H doublet relative intensity 4, $\delta = 4.43$ ppm, J = 1.6 Hz, and singlet relative intensity 1, $\delta = 4.56$ ppm) is consistent with a monomeric structure. Peaks at 614–512 and 466 cm⁻¹ in its IR spectrum, and at 572 and 475 cm⁻¹ in its Raman spectrum, are due to Mo–F and Mo–OMe stretching vibrations. The liquid decomposes above 50° to give dimethyl ether, a trace of methyl fluoride and a blue solid.

Reactions of MoF₆ with excess trimethylmethoxosilane or methyltrimethoxosilane (reaction 2) gave only small yields of MoF(OMe)₅. The major product is a yellow solid which appears to be predominantly tetramethoxomolybdenum(VI) difluoride. Its ¹H NMR spectrum in C₆F₆ consists of a singlet, $\delta = 4.62$ ppm; its ¹⁹F spectrum was not obtained due to its low solubility. A similar product is obtained from MoF₆ and tetramethoxosilane (reaction 3).

The lower members of the series $MoF_{6-n}(OMe)_n$ apparently decompose below 20°. A yellow solid is formed from MoF_6 and $(MeO)_2SO$ (reaction 4) but this decomposes at -20° giving molybdenum oxotetrafluoride and MeF. By analogy with the corresponding reaction of WF_6^2 , the solid is believed to be methoxomolybdenum(VI) pentafluoride.

 MoF_6 reacts with $Me_{4-n}Si(OMe)_n$ more vigorously than does WF_6 , and methoxomolybdenum(VI) fluorides decompose more readily than do their

REA	ctions of MoF6			
Rea	actants (mmoles)	Reaction conditions	Products (mmoles)	
-	$MoF_6(8.9) + Me_2Si(OMe)_2$	78° to $\pm 20^\circ$ over 2 d	Me ₂ SiF ₂ (21.4)	Unchanged
	(C17)		MoF(OMe) ^{,a}	recovered
3	$MoF_{6}(12.4) + MeSi(OMe)_{3}$	-78° to $+20^{\circ}$ over 2 d	MeSiF ₃	
	(27.8)		MoF ₂ (OMe) ₄ ? ^b	MeSi(UMe) ₃ recovered
ŝ	$MoF_6(7.1) + Si(OMc)_4$ (7.0)	20°, 10 min	SiF4 (6.9) Me2O MoF2(OMe)4 ?°	The solid product
				was slightly charred
4	$MoF_{6}(4.0) + (MeO)_{2}SO (12.0)$	50°, 10 min	MeOS(O)F	Unchanged MoF ₆
			MeF (11.2) MoOF4 ^d	recovered
1 <u>1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ound C, 22.8; H, 5.4; F, 6.6; Mo, 3 ound C, 17.4; H, 4.3; F, 14.1; Mo, ound C, 14.6; H, 3.6; F, 16.2; Mo,	4.1. C ₅ H ₁₃ FO ₃ Mo requires C, 36.3. C ₄ H ₁₂ F ₂ O ₄ Mo requires C 38.3%.	22.6; H, 5.6; F, 7.0; M 7, 18.6; H, 4.7; F, 14.7;	3, 35.5%. Mo, 37.2%.

J. Fluorine Chem., 1 (1971/72) 376-378

TABLE 1

^d Identified by IR spectroscopy, A. J. EDWARDS AND B. R. STEVENTON, J. Chem. Soc. (A), (1968) 2503; Found Mo, 52.0. MoF40 requires Mo, 51.0%.

tungsten analogues. The average bond energies in MoF_6 and WF_6 are 107 and 121 kcal mole⁻¹ respectively⁵, and M-F bond energy differences may be partly responsible for the different behaviour observed.

EXPERIMENTAL

Reactions were carried out as described previously² in a vacuum system. Careful temperature control was necessary during the initial part of a reaction, otherwise explosions occurred. ¹H and ¹⁹F NMR spectra were referenced with respect to internal Me₄Si and CCl₃F respectively and a positive δ value corresponds to a low field shift. Volatile products were identified by IR and NMR spectroscopy using authentic samples for comparison. Molybdenum was determined gravimetrically using 8-hydroxoquinoline and microanalyses were by Laboratorium Beller, Göttingen.

REFERENCES

- 1 L. B. HANDY AND F. E. BRINCKMAN, Chem. Comm., (1970) 214.
- 2 A. M. NOBLE AND J. M. WINFIELD, J. Chem. Soc. (A), (1970) 501, 2574.
- 3 R. R. MCLEAN, D. W. A. SHARP AND J. M. WINFIELD, Chem. Comm., (1970) 452.
- 4 T. A. O'DONNELL AND D. F. STEWART, Inorg. Chem., 5 (1966) 1434.
- 5 J. L. SETTLE, H. M. FEDER AND W. N. HUBBARD, J. Phys. Chem., 65 (1961) 1337; P. A. G. O'HARE AND W. N. HUBBARD, *ibid.*, 70 (1966) 3353.